Sulfidation of silver nanowires inside human alveolar epithelial cells: a potential detoxification mechanism.
نویسندگان
چکیده
Silver nanowires (AgNWs) are being developed for use in optoelectronics. However before widespread usage, it is crucial to determine their potential effects on human health. It is accepted that Ag nanoparticles (AgNPs) exert toxic effects by releasing Ag(+) ions, but much less is known about whether Ag(+) reacts with compounds, or any downstream bioactive effects of transformed AgNPs. Analytical high-resolution transmission electron microscopy has been employed to elucidate cellular uptake and reactivity of AgNWs inside human alveolar epithelial type 1-like cells. AgNWs were observed in the cytoplasm and membrane-bound vesicles, and precipitation of Ag2S within the cell occurred after 1 h exposure. Cell viability studies showed no evidence of cytotoxicity and reactive oxygen species were not observed on exposure of cells to AgNWs. We suggest that Ag2S formation acts as a 'trap' for free Ag(+), significantly limiting short-term toxicological effects - with important consequences for the safety of Ag-nanomaterials to human health.
منابع مشابه
Inactivation, Clearance, and Functional Effects of Lung-Instilled Short and Long Silver Nanowires in Rats
There is a potential for silver nanowires (AgNWs) to be inhaled, but there is little information on their health effects and their chemical transformation inside the lungs in vivo. We studied the effects of short (S-AgNWs; 1.5 μm) and long (L-AgNWs; 10 μm) nanowires instilled into the lungs of Sprague-Dawley rats. S- and L-AgNWs were phagocytosed and degraded by macrophages; there was no frustr...
متن کاملSulfidation of silver nanoparticles decreases Escherichia coli growth inhibition.
Sulfidation of metallic nanoparticles such as silver nanoparticles (AgNPs) released to the environment may be an important detoxification mechanism. Two types of AgNPs-an engineered polydisperse and aggregated AgNP powder, and a laboratory-synthesized, relatively monodisperse AgNP aqueous dispersion-were studied. The particles were sulfidized to varying degrees and characterized to determine th...
متن کاملModulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملModulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملCytotoxicity of Silver Nanoparticles on Human Gingival Epithelial Cells: An In-Vitro Study
Objective: Nanosilver has numerous applications in medicine due to its potent antibacterial activity. However, data regarding the bio-safety of its effective concentrations is scarce. This study aims to assess the toxicity of silver nanoparticles on human gingival epithelial cells under in-vitro conditions. Methods: This in vitro study evaluated the toxic effects of filtered and unfiltered ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 5 20 شماره
صفحات -
تاریخ انتشار 2013